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The theory of optical second-harmonic �SH� scattering from finite cylinders of arbitrary size, orientation, and
crystallographic structure is developed within the Rayleigh-Gans-Debye approximation for plane-wave exci-
tation. Both cases of particles comprised of noncentrosymmetric and centrosymmetric media are examined. For
particles comprised of noncentrosymmetric media, all nonlinear susceptibility elements share a common “lin-
ear” scattering form factor. For centrosymmetric media, the various nonlinear susceptibility components arising
from the surface response experience different scattering form factors. Regardless of the type of media, SH
scattering from finite cylinders may be described in terms of an effective nonlinear susceptibility tensor for the
particle. Several essential aspects of the SH scattering process are analyzed, such as the radiation patterns and
their dependence on particle orientation and input polarization, its chiral response, as well as the size and
wavelength scaling for small particles.
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I. INTRODUCTION

The application of second-order nonlinear optical tech-
niques for investigating the structure and various properties
of small particles, such as second-harmonic generation
�SHG� and sum-frequency generation �SFG�, is a subject of
considerable current interest. SHG was already recognized as
a probe of noncentrosymmetric particles as early as in the
beginning of the 1960s. In that decade, SHG was developed
and employed to classify particles according to the strength
of their nonlinear response and their potential for phase
matching.1 Recently, SHG has been shown to permit infer-
ence of the crystallographic orientation of individual
particles.2–5 SHG is also a well-developed tool for investigat-
ing surfaces of materials possessing centrosymmetric
media.6–12 Such capability arises from the fact that, within
the dipole approximation, SHG is forbidden from the bulk of
a centrosymmetric medium but is allowed at the surface,
where the inversion symmetry is broken. This property has
been exploited to probe the surfaces of small spheres made
of centrosymmetric material.13 Recent reviews illustrate the
increasing importance of the SHG/SFG techniques not only
as probes of small particles,14,15 but also as significant tools
in nonlinear optical microscopy.16–19

Although the nonlinear response of a particle reflects its
crystallographic symmetry, the shape of the particle plays an
equally important role in defining the SH excitation and ra-
diation processes.20,21 For example, it has been shown
theoretically22,23 and experimentally24,25 that in the Rayleigh
limit, a small sphere comprised of a centrosymmetric me-
dium radiates SH mainly via two modes: nonlocally excited
electric-dipole and locally excited electric-quadrupole mo-
ments. Slight deviation from the spherical shape, however,
may lead to a locally excited dipole moment, with radiation
and polarization properties differing significantly from those
of a sphere.26,27 A recent theoretical study has further eluci-
dated the relationship between the particle’s structure and the
SHG electromagnetic selection rules.28 While second-order
nonlinear optical experiments on nonspherical particles con-
tinue to grow at a rapid pace,5,29–46 the theoretical description

of second-order nonlinear optical scattering has been largely
limited to spherical particles.22,23,47–55

We briefly describe some of the relevant prior theoretical
studies of SH electromagnetic scattering from nonspherical
particles. An early calculation of SHG from cylinders was
carried out to explain SHG from collagen fibrils.56,57 Recent
works include the theory of SH scattering arising from �1�
the surface of a two-dimensional structure of arbitrary58 and
circular59 cross-sectional shape, �2� the bulk nonlocal re-
sponse of an infinite wire of centrosymmetric medium,60,61

and �3� the bulk local response of a nanowire of noncen-
trosymmetric medium supported by a metallic surface.5 Re-
lated studies include SHG from plasmon excitation of
two-dimensional metallic structures62 and first-principles cal-
culations of the nonlinear optical response of nanotubes.63–65

The theoretical treatments of SH scattering described above
are based on two-dimensional geometries, i.e., an infinitely
long structure, with the fundamental excitation traveling
along or transverse to the axis of this configuration. Despite
these developments, SHG from cylinders of finite dimen-
sions, arbitrary orientation, and arbitrary material symmetry
has not been explored. The length of a cylindrical particle,
for example, plays an important role in the SH scattering
from such particles, as has been recently demonstrated.44

Thus, we address the need for a theoretical description that
provides basic understanding of the nonlinear response of
finite anisotropic particles, as modeled by a cylinder of finite
length.

Before extracting the nonlinear optical response of aniso-
tropic structures, one needs to consider their linear optical
response. For the general case of linear electromagnetic scat-
tering from a finite cylinder having a different dielectric con-
stant from that of its surrounding environment, there is no
closed-form solution to Maxwell’s equations.66–68 Approxi-
mate solutions, however, exist when the refractive indices of
the two media are nearly similar and the phase accumulated
by light traveling through the particle is very small. Such
condition applies to a large class of particles, which include
biological, macromolecular, and other low-index contrast
structures.66–72 Approximate methods become necessary es-
pecially when dealing with complex structures where rigor-
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ous theory or numerical techniques become impractical or
too intensive. Two commonly used approximations are the
Rayleigh-Gans-Debye �RGD� and Wentzel-Kramers-
Brillouin �WKB� methods.66–72 Within the RGD model, the
internal field is assumed to be the same as the incident field.
This model is roughly valid under two conditions: �1� �m
−1��1, where m is the relative index between the particle
and its environment, and �2� 4�R�m−1� /��1, where R is a
characteristic dimension of the particle. For the WKB tech-
nique, the internal field is equal to the incident field modu-
lated by a phase delay factor that corresponds to an addi-
tional phase shift experienced by the wave propagating
inside the particle. Consequently, the WKB method serves as
a refinement of the RGD model and has been shown to be
relatively successful in predicting scattering patterns for non-
spherical objects.72

Unlike the case of linear optical scattering, the lack of
contrast in the dielectric functions of the particle and the
surrounding medium does not imply a weak response for
nonlinear optical scattering. Thus, the RGD model has a
wide range of applicability to nonlinear scattering problems
of practical interest. For example, several recent experiments
from spherical particles possessing centrosymmetric media,
which exhibit either low or no index contrast with their en-
vironment, e.g., liposomes, vesicles, cells, oil emulsions, or
polystyrene in liquids, have demonstrated the intrinsic sensi-
tivity of SHG to the particles’ surfaces.14,15 To describe the
nonlinear optical response of low-index contrast particle sys-
tems, workers have employed the scattering approximations
described above. The RGD model has been applied to the
case of SHG and SFG scattering from a sphere of centrosym-
metric medium23,49,52–54,73,74 with excellent agreement with
experiments.52,73,74 The WKB method has been developed to
describe SFG from a sphere that has a slight index mismatch
with its environment.53 Because of the inherent simplicity of
the RGD model and its success in predicting the angular
patterns of the SH radiation in spheres, we restrict ourselves
to the RGD model in calculating the SH scattering from
finite cylinders. The RGD model yields the SH field for a
finite cylinder, which can be expressed in an analytical form,
and reveals a myriad of novel features associated with this
seemingly simple scattering process.

In applying the RGD model to describe SHG from a finite
cylinder, we have considered both cases of particles com-
prised of noncentrosymmetric and centrosymmetric media.
As presented in this paper, for noncentrosymmetric media we
obtained the following results: �1� The nonlinear optical vec-
tor form factor may be expressed as a simple product of the
linear optical form factor and the vector nonlinear suscepti-
bility that is derived from a contraction of the nonlinear op-
tical susceptibility tensor with the two fundamental field po-
larizations. Thus, a single scattering form factor governs the
scattering process for all the nonlinear susceptibility ele-
ments. �2� For the forward scattering geometry, the nonlinear
form factor is independent of the dimensions of the particle
and depends only on the crystallographic orientation and the
polarization of the fundamental field. �3� In the Rayleigh
limit of a small cylinder, the SH field scales as E�2��

�a2L /�2, where a and L are the radius and length of the
cylinder, respectively, and � is the fundamental wavelength.

For the case of a cylinder possessing centrosymmetric me-
dium, we obtain the following features: �1� In contrast to the
noncentrosymmetric case, each surface nonlinear optical sus-
ceptibility element may experience multiple scattering form
factors. �2� The effective susceptibility of the particle,53

which can be thought of as a nonlinear optical polarizability
of the particle, has 18 independent elements even if the local
surface symmetry is isotropic without a mirror plane. In con-
trast, a sphere comprising centrosymmetric bulk medium of
arbitrary surface symmetry has only four independent effec-
tive nonlinear susceptibility elements. �3� In the forward
scattering direction, the nonlinear optical response of the cyl-
inder corresponds to an effective C� symmetry, so that the
effective susceptibility has only four independent elements
for a surface of arbitrary symmetry. These four elements
arise from a linear combination of seven independent surface
nonlinear susceptibility elements. The remaining 11 indepen-
dent surface nonlinear susceptibility terms do not contribute
to the forward scattering direction. �4� It is known that for
randomly oriented chiral molecules, SHG is forbidden, but
SFG is allowed. However, when these chiral molecules are
adsorbed on a single cylindrical particle, SHG becomes al-
lowed. An effective chiral axis may form along the cylindri-
cal axis under several geometrical conditions, such as the
forward scattering configuration or when a��. Under these
conditions, the effective chiral susceptibility arises purely
from the surface chiral sources. �5� In the Rayleigh limit, the
SH field E�2�� may scale either as �a2L /�3 or �aL /�2. The
latter scaling arises when at least one of the “forward emit-
ting” surface susceptibility elements is present, such as the
chiral susceptibility. With regards to the effect of the finite
length of the cylinder, the SH signal is found to be an oscil-
latory function of the cylinder’s length for both noncen-
trosymmetric and centrosymmetric cases.

The scope of this paper is as follows: In Sec. II, we de-
velop the theory of SH scattering by calculating the nonlin-
ear form factor and the effective nonlinear optical suscepti-
bility of the particle for both noncentrosymmetric and
centrosymmetric media. Section III is devoted to examples
and discussion of some important features of SH scattering,
such as the radiation pattern. In particular, we consider the
bulk or the local surface symmetry belonging to the symme-
try classes C�, C6, and C4. We then analyze the results for
certain special geometries, such as forward scattering and
limiting cases for Rayleigh-sized particles, wires, and disks,
the chiral nonlinear response, and polarization dependence.

II. THEORETICAL DESCRIPTION

The starting point for the derivation of the SH field is the
vector potential A�r�. Within the Lorentz gauge, the vector
potential A�r� for SHG arising from a current-density source
J�r�� or nonlinear polarization P�2���r�� is given by75

A�r� =
1

c
� exp�iK1�r − r���J�r��

�r − r��
dr�

=
K

i
� exp�iK1�r − r���P�2���r��

�r − r��
dr�, �1�

where r and r� denote the field and source points, respec-
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tively, K1=n�2��2� /c=n�2��K is the magnitude of the scat-
tered wave vector K1 �=K1r̂�; K is the magnitude of vacuum
SH wave vector; and n is the refractive index of the medium.
The second equality arises from the relation J�r� , t�
=�P�2���r� , t� /�t. The vector quantities J�r�, P�2���r�, and
A�r� represent complex spatial amplitudes for the physical
quantities according to the relation G�r , t�=2 Re�G�r�exp
�−im�t��, where m=1 or 2 corresponds to the fundamental
or SH frequency. For simplicity, we assume plane-wave ex-
citation. The analysis may be extended to the case of focused
beam geometry, as considered theoretically for the case of
spheres51 and membranes.76

The nonlinear optical polarization may be expressed as6

P�2���r�� = �J�2�:E����r��E����r�� + �Js
�2�:E����r��E����r��

�	�r� − h�r��� + �Jb
�2�

] E����r�� � E����r�� ,

�2�

where E����r�� is the fundamental field at the source point r�.
From this point forward, we employ the RGD approximation
in our calculations; in particular, the source field E����r�� is
equated to the incident field, denoted by E0

����r�
= �̂0E0 exp�ik1 ·r�, where k1=k1k̂, k1=n���� /c=n���k is the
magnitude of the fundamental wave vector k1, k is the mag-
nitude of vacuum fundamental wave vector, and �̂0 is the unit
polarization vector of the input field. Thus, E����r��
=E0

����r��. The local response of the medium is described by
the bulk and surface nonlinear susceptibility tensors �J�2� and
�Js

�2�, respectively, while the leading-order nonlocal response
is described by the nonlinear susceptibility �Jb

�2�. The function
h�r�� defines the boundary of the surface. Evaluating Eq. �2�,
we may write the nonlinear polarization as

P�2���r�� = E0
2��r��exp�i2k1 · r�� , �3�

where ��r�� is the nonlinear optical susceptibility vector de-
fined as

��r�� = �J�2�:�̂0�̂0 + �Js
�2�:�̂0�̂0	�r� − h�r��� + i�Jb

�2�
] �̂0k1�̂0.

�4�

In the far-field zone, r
r�, where r= �r� and r�= �r��, the
term exp�iK1�r−r����exp�iK1�r− r̂ ·r��� in the integral of
Eq. �1�. Substituting Eq. �3� into Eq. �1�, we obtain

A�r� =
K exp�iK1r�VE0

2p

ir
, �5�

where V is the volume of the particle and p is the vector
nonlinear susceptibility form factor or, simply, the nonlinear
form factor, which is proportional to the effective dipole mo-
ment, and is given by

p =
1

V
�

V

��r��exp�iq · r��dr�, �6�

and q	2k1−K1 is the wave-vector transfer. The SH field is
obtained using the relation E�2���r�= iK�r̂�A�r��� r̂, where
A�r� is given by Eq. �5�, which yields

E�2�� =
K2 exp�iK1r�VE0

2

r
�r̂� p�� r̂ . �7�

A. Small index difference

Before embarking on the investigation of SH scattering
using the RGD model, we take a brief digression by consid-
ering the WKB method for the case of small refractive-index
difference between the particle and its environment. Within
the WKB approximation, the incident beam is assumed to be
undeflected by the particle but is allowed to acquire phase in
proportion to the degree of penetration into the particle as the
fundamental field propagates from an entrance position r1�
into an interior position r� of the particle. Likewise, one may
also stipulate that the SH wave propagate rectilinearly and
experience a local phase delay as it propagates from the gen-
eration point r� to some point r2� just outside the particle.
Thus, the phase term given by q ·r� in Eq. �6� may be re-
placed by q ·r�+2�k1 · �r�−r1��−�K1 · �r�−r2��, where the
second term is twice the excess phase delay experienced lo-
cally by the fundamental wave, and the third term corre-
sponds to the excess phase delay experienced by the SH
wave as it exits the particle. The quantities �k1 and �K1 are

given by �k1=�n� k k̂ and �K1=�n2�K r̂, where �nm�
=nin�m��−nout�m�� is the difference between the refractive
indices of the particle and the environment at angular fre-
quency m�, with m=1 or 2. The phase factor may be written
as �=q� ·r�+ ��2�k1−�K1� · �r2�−r1���, where q�=2�k1
+�k1�− �K1+�K1�. Note that in the absence of the second

term in �, which is proportional to ��n�k̂−�n2�r̂� · �r2�−r1��,
the problem is mathematically identical to the RGD model
with q replaced by q�. The presence of this second term,
however, may significantly complicate the integration in Eq.
�6� and lead to a nonanalytical expression for the SH field.
Hence, in this paper, we have limited our investigation to the
case of the RGD model that is sufficient in describing the
zeroth-order behavior of the nonlinear optical response of a
finite cylindrical particle. It should be noted that other work-
ers have considered nonindex-matched structures, e.g., infi-
nite two-dimensional structures58 or thin wires5,60 but with
the restriction of the fundamental wave traveling parallel or
orthogonal to the axis, and for specific material symmetry.

B. Scattering geometry and parameters

Figure 1 illustrates the scattering geometry. The scattering
plane is defined by the directions of the incident fundamental
and the scattered SH waves, which are specified by the fun-
damental and SH wave vectors k1=k1ẑ and K1=K1r̂, respec-
tively, where r̂= �sin  cos �x̂+sin  sin �ŷ+cos ẑ�. The
particle is fixed with respect to the coordinates �x̂� , ŷ� , ẑ��
with the cylindrical axis parallel to ẑ�; this particle frame is
arbitrarily oriented relative to the laboratory frame �x̂ , ŷ , ẑ�.
We interchangeably denote the laboratory axes �x ,y ,z�
by �x1 ,x2 ,x3�, the particle reference axes �x� ,y� ,z�� by
�x1� ,x2� ,x3��, and the crystallographic axes �x� ,y� ,z�� by
�x1� ,x2� ,x3��. We assume the following transformations be-
tween these coordinate frames:

OPTICAL SECOND-HARMONIC SCATTERING FROM… PHYSICAL REVIEW B 78, 205322 �2008�

205322-3



xi� = Mij�xj , �8a�

xi� = Mij�xj�, �8b�

where Mij� �Mij� � is an element of the transformation matrix
M� �M�� between the particle �crystallographic� and labora-
tory �particle� frames of reference.

Throughout this paper, we have adopted the Einstein sum-
mation convention for terms with repeated indices unless
noted otherwise. We assume that the laboratory and particle
reference frames are related through an Euler transformation
that employs the sequence of rotations in Fig. 2 to define the
Euler transformation matrix

M��,�,�� = Rz���Ry���Rz��� , �9�

where Ri��� is the rotation matrix obtained through a �coun-
terclockwise� rotation of � about the xi axis. We then obtain
the relation xi�=Mij�� ,� ,��xj. Because of the axial symme-
try of the cylinder, the choice of � is immaterial so we may
set �=0. For the noncentrosymmetric case, we assume a ro-
tation matrix of M�� ,� ,�� linking the crystallographic and
particle reference frames, xi�=Mij�� ,� ,��xj�. Using Eqs. �8a�,
�8b�, and �9�, we obtain

Mij� 	 Mij��,�,0� , �10a�

Mij� 	 Mij��,�,�� . �10b�

The source vector r�, which is expressed in terms of the
particle basis vectors, may be written in Cartesian �x� ,y� ,z��
or cylindrical coordinates ��� ,�� ,z�� as

r� = x�x̂� + y�ŷ� + z�ẑ� = ���̂� + z�ẑ�. �11�

The cylindrical coordinate system provides a natural set of
coordinates for the source points located at the curved side of
the cylinder. In particular, the unit vectors �̂�=cos �� x̂�
+sin ��ŷ�, �̂�=−sin ��x̂�+cos ��ŷ�, and ẑ� will be used in
describing the input electric field vector and the nonlinear
polarization at the curved portion of the cylinder. For an
input radiation propagating along the ẑ direction, its unit po-
larization vector may be expressed in the laboratory or par-
ticle coordinates as

�̂0 = �01x̂ + �02ŷ = E1x̂� + E2ŷ� + E3ẑ� = E���̂� + E���̂� + E3ẑ�,

�12�

where the component Ei in the particle frame is related to the
component �0j in the laboratory frame through Ei=Mij��0j; in
cylindrical coordinates, its components are given by E��
= �E1 cos ��+E2 sin ��� and E��= �E2 cos ��−E1 sin ���.

One important parameter is the phase term q ·r� that is
used in Eq. �6�. We assume that the medium is dispersion-
less, i.e., �2k1�= �K1�=K1, so that

q = K1�ẑ − r̂� , �13�

whose magnitude is given by q= �q�=2K1 sin� /2�. The
wave-vector transfer q can be expressed in the laboratory
and particle frames as

q = q1x̂ + q2ŷ + q3ẑ = Q1x̂� + Q2ŷ� + Q3ŷ�, �14�

where q1=−K1 sin  cos �, q2=−K1 sin  sin �, q3=K1�1
−cos �, and Qi=Mij�qj. Thus, using Eqs. �11� and �14�, we
obtain

q · r� = Q1�� cos �� + Q2�� sin �� + Q3z�. �15�

C. Noncentrosymmetric media

We now consider the case of a particle possessing single-
domain, noncentrosymmetric medium. We may further as-
sume that it has an arbitrary shape. For a noncentrosymmet-
ric medium, the second and third terms in Eq. �4� are
extremely weak compared to the first term and, thus, are
neglected in this calculation. The leading term �J�2� : �̂0�̂0 in
Eq. �4�, which is a contraction of the nonlinear susceptibility
tensor with the two fundamental unit polarization vectors, is
a constant vector that is independent of the source vector r�;
hence, this term can be taken out of the integral of Eq. �6� to
yield

p = f �0, �16�

where

x

y

z

1K

ϕ

θz′

1kx

y

z

1K

ϕ

θz′

1k

FIG. 1. Geometry of second-harmonic scattering from a finite
cylinder.
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FIG. 2. Euler transformation for a sequence of rotations de-
scribed by the transformations Rz���, Ry���, and Rz���.
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f =
1

V
�

V

exp�iq · r��dr� �17�

and

�0 = �J�2�:�̂0�̂0. �18�

The function f is the usual form factor commonly known in
linear optical scattering, which has the property f =1 for the
case of forward scattering �q=0�. Thus, Eq. �16� shows that
the nonlinear form factor p of a bulk nonlinear active particle
can be described as a simple product of the linear optical
form factor f and the susceptibility vector �0. This property
implies that all the nonlinear tensor elements experience the
same scattering form factor f . Furthermore, Eq. �16� is valid
for an arbitrarily shaped particle satisfying the RGD condi-
tions and for a noncentrosymmetric medium of arbitrary
symmetry.

The form factor for a cylinder of radius a and length L,
with the flat sides defined by z�=�L /2, is given by67,68

f = 2
sin�Q3�a�

Q3�a

J1�Qa�
Qa

, �19�

where �=L /2a is the aspect ratio, Q3=q · ẑ�, and Q is the
magnitude of the component of q perpendicular to z�, i.e.,

Q = �Q1
2 + Q2

2�1/2 �20�

and Jn is the Bessel function of the first kind of order n. The
vector �0 may be written in terms of the crystallographic unit
basis vectors or the particle coordinates, i.e., �0=�0i� x̂i�
=�0i� x̂i�, to yield

�0i� = �ijk
�2���̂0 · x̂ j����̂0 · x̂k�� , �21a�

�0l� = �ijk
�2�Mil�Mjm� Mkn� EmEn, �21b�

where the nonlinear susceptibility element �ijk
�2� is expressed

in the crystallographic reference frame. In obtaining Eq.
�21b�, we made use of Eqs. �8b� and �12�. By means of Eqs.
�17� and �21b�, the nonlinear form factor p may be written in
terms of the particle coordinates, i.e., p= pi�x̂i�, where

pi� = �ijk
effE jEk �22�

and

�ijk
eff = f�ijk��2� = f�lmn

�2� Mli�Mmj� Mnk� �23�

is the effective susceptibility in the particle frame. The con-
cept of the effective susceptibility was introduced in Ref. 53
to describe the effective nonlinear polarizability of a particle
in the principal �i.e., the particle� reference frame. This use-
ful quantity is dependent not only on the material suscepti-
bilities but also on the particle’s dimensions and the differ-
ence between the scattered and input wave vectors. It should
be noted that �ijk

eff is equivalent to the definition used in Refs.
53 and 54 except for a minor difference in the normalization
constant arising from the 1 /V factor in Eq. �16�. Equation
�22� is a general expression that is valid even for the case of
centrosymmetric medium, as will be shown in Sec. II D.

Before we proceed with the case of the particle comprised
of centrosymmetric medium, we make a few remarks regard-

ing the general formula given by Eq. �16� on the dependence
of p on various material, geometrical, and optical param-
eters. We begin by examining its two constituent factors: the
form factor f and the nonlinear susceptibility vector �0. In-
specting Eqs. �15� and �17�, we find that f depends on the
particle dimensions, particle orientation, and the scattering
angles. Examining Eq. �21b�, we observe that �0 is indepen-
dent of the particle dimensions but is dependent on the non-
linear susceptibility elements, the crystallographic orienta-
tion, and input-polarization state �̂0. By exploring the
polarization response of the SH scattering from the particle,
one may, in principle, infer the orientation of the crystallo-
graphic axes. Recent studies have experimentally demon-
strated the relationship between the crystallographic orienta-
tion in nanocrystals and the polarization properties of
SHG.2–5

D. Centrosymmetric media

We now consider the case of a finite cylinder comprised
of isotropic and centrosymmetric bulk medium. The first
term in Eq. �4� vanishes so that we can write �=�s+�b,
where �s and �b are equal to the second and third terms of
Eq. �4�, respectively. The corresponding nonlinear form fac-
tor then arises from the surface contribution and a nonlocal
bulk polarization source, which we denote by ps and pb,
respectively, i.e.,

p = ps + pb = ps
flat + ps

curved + pb. �24�

The terms ps
flat and ps

curved are contributions originating from
the flat circular caps and the curved wall of the cylinder,
respectively. Let us first consider the vector pb because it is
simpler to evaluate. Its corresponding ��r�� term in Eq. �4�
reduces to a simple expression �b=2i���̂0 · �̂0�k1, where �
=�b, ijij

�2� /2. Here, �b, ijij
�2� =�b, 1212

�2� �not summed� is one of the
independent tensor elements of �Jb

�2�. Noting that �b is a con-
stant vector, we obtain, as in the case of the derivation lead-
ing to Eq. �16�, pb= i���̂0 · �̂0�f K1ẑ where f is given by Eq.
�19�. Furthermore, if we add to pb a term that is proportional
to r̂, the resulting SH field due to pb is not altered as can be
seen from Eq. �7�. Thus, we may write pb= i���̂0 · �̂0�f K1�ẑ
− r̂� or

pb = i���̂0 · �̂0�fq �25�

using Eq. �13�.
The surface contribution ps is given by

ps =
1

V
�

V

�Js
�2�:�̂0�̂0	�r� − h�r���exp�iq · r�� dr�. �26�

Integrating with respect to r� reduces the volume integral in
Eq. �26� into a surface integral that consists of three regions:
the two “top” and “bottom” flat sides, which correspond to
the terms 	�z−L /2� and 	�z+L /2�, respectively, and the
curved surface of the cylinder, which corresponds to the term
	���−a�. For the flat sides �z�=�L /2�, the vector
�Js

�2� : �̂0�̂0= x̂i��s, ijk
�2� E jEk �in terms of the particle coordinates�

is constant and, thus, may be taken out of the integral in Eq.
�26�. Integrating Eq. �26� over the surfaces corresponding to
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z�=�L /2 and combining the two terms, we obtain

ps
flat = iQ3�Js

�2�:�̂0�̂0f . �27�

The vector ps
curved arises from the curved part of the cylinder

corresponding to ��=a. For this surface, the term �Js
�2� : �̂0�̂0 is

a vector whose direction depends on the location of the
source vector ��=a�̂�, i.e., it depends on the azimuthal angle
�� and, hence, cannot be taken out of the integral in Eq. �26�.
Details of this calculation are presented in Appendix A. For

any tensor element �s,ijk
�2� , direct integration of Eq. �26� over

the curved portion of the particle yields

ps
curved =

1

�a

sin�Q3�a�
Q3�a

� , �28�

where �=
0
2��Js

�2� : �̂0�̂0 exp�ia q · �̂��d��=
0
2��Js

�2� : �̂0�̂0 exp
�ia�Q1 cos ��+Q2 sin ����d��. In terms of the particle
frame, �=�i�x̂i� where

�i� = �s, ���
�2� �I3�	i1	��� + 	i2	���,	i2	��� − 	i1	���;E1	��� + E2	���,E2	��� − E1	���;E1	��� + E2	���,E2	��� − E1	����

+ �I2�	i1	��� + 	i2	���,	i2	��� − 	i1	���;E1	��� + E2	���,E2	��� − E1	����E3	�z� + ��↔ ��� + I1�	i1	��� + 	i2	���,	i2	���

− 	i1	����E3
2	�z�	�z�� + 	i3�s, z���

�2� �I2�E1	��� + E2	���,E2	��� − E1	���;E1	��� + E2	���,E2	��� − E1	���� + �I1�E1	���

+ E2	���,E2	��� − E1	����E3	�z� + ��↔ ��� + I0E3
2	�z�	�z�� �29�

and each index �, �, or � refers to the local coordinate ��,
��, or z�. The expression ��↔�� denotes the immediately
preceding expression with indices � and � interchanged. The
terms I0, I1, I2, and I3 are integrals defined in Appendix A
and are evaluated to be

I0 = 2�J0�	0� , �30a�

I1�A,B� = 2�iJ1�	0��A cos � + B sin �� , �30b�

I2�A1,B1;A2,B2� = 2��− J2�	0� j=1

2
�Aj cos � + Bj sin ��

+ �J1�	0�/	0��A1A2 + B1B2�� , �30c�

I3�A1,B1;A2,B2;A3,B3�

= 2�i�− J3�	0� j=1

3
�Aj cos � + Bj sin �� + �J2�	0�/	0�

���3A1A2A3 + A1B2B3 + A2B1B3 + A3B1B2�cos �

+ �3B1B2B3 + B1A2A3 + B2A1A3 + B3A1A2�sin ��� ,

�30d�

where 	0=Qa, cos �=Q1 /Q, and sin �=Q2 /Q. Note that the
Bessel functions in Eqs. �30a�–�30d� may be transformed
into Bessel functions of other orders by using the identity
Jn−1�	0�+Jn+1�	0�=2nJn�	0� /	0.

The nonlinear form factor for a cylinder possessing cen-
trosymmetric medium, given by Eq. �24�, holds true for a
general surface nonlinear response. With the aid of Eqs. �29�
and �30a�–�30d�, p is obtained by expanding Eqs. �25�, �27�,
and �28�. Inspecting these equations, we note that each com-
ponent pi� of p in the particle frame is expressed in terms of
linear combinations of the product E jEk. Consequently, pj�
may also be described, as in the case of noncentrosymmetric
medium, in terms of the effective nonlinear susceptibility

tensor element �ijk
eff as pi�=�ijk

effE jEk. Explicit expressions for
�ijk

eff are presented in Sec. III B for the case of a general
isotropic surface lacking mirror symmetry.

E. Calculation of the SH field and radiated power

The nonlinear form factor component pi of p= pix̂i in the
laboratory frame may be obtained from the component pj� in
the particle frame according to the relation

pi = Mij�
Tpj�, �31�

where Mij�
T=Mji� is an element of the transpose of matrix

M�. The SH field E�2�� is then obtained according to Eq. �7�.
For the case of the cylinder, M� is defined according to
Eq. �9�. In this paper, we have also considered the case of
the sphere, which requires a different definition for M�.
Because of the lack of a structural axis for a sphere, a natural
and convenient particle reference frame would be based on
the direction of the wave-vector transfer q. The sphere
problem is discussed in detail in Appendix B for SHG
�and in Refs. 52–54 for SFG�. The radiated SH power
per unit solid angle may then be calculated using the
equation P�	dP /d�= �cr2n�2�� / �2�����̂� ·E�2���r��2 for
detection through an analyzer that passes polarization state
�̂. Another important quantity that one may wish to compute,
but is not considered in this paper, is the orientationally
averaged power per unit solid angle given by �P��
= �1 /4��
0

2�
0
��dP /d��sin �d�d�, where � and � are the

particle orientation angles defined in Eq. �10a�. The quantity
�P�� may be used in describing, for example, the SH radia-
tion patterns of a collection of randomly oriented monodis-
perse cylinders in a solution.

III. SPECIAL CASES AND DISCUSSION

In the preceding section, we have calculated the SH non-
linear form factor p, as well as the SH effective nonlinear
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susceptibility tensor �ijk
eff, for a cylinder comprising noncen-

trosymmetric �through Eq. �23�� or centrosymmetric medium
�through Eqs. �25� and �27�–�29�� of arbitrary symmetry. We
now apply these results to specific bulk and surface symme-
try classes.

A. Noncentrosymmetric case: Bulk symmetry classes
C�, C6, and C4

1. Nonlinear form factor

For illustration purposes, we consider a particle whose
medium possesses a symmetry that belongs to any of the
following point group symmetry classes: C�, C6, or C4. For
these symmetry classes, there are four independent nonlinear
susceptibility elements for the SHG process given by �z�z�z�

�2� ,
�z�x�x�

�2� =�z�y�y�
�2� , �x�z�x�

�2� =�y�z�y�
�2� , �x�y�z�

�2� =−�y�x�z�
�2� , which are

expressed in terms of the crystallographic frame. If si=	iz�
denotes the crystallographic symmetry axis, the nonlinear
susceptibility tensor element �ijk

�2� may be expressed suc-
cinctly as

�ijk
�2� = a�sisjsk + b�si	 jk +

c�

2
�sj	ik + sk	ij�

+
d�

2
��ijlslsk + �iklslsj� , �32�

where �z�z�z�
�2� =a�+b�+c�, �z�x�x�

�2� =b�, �x�z�x�
�2� =c� /2, �x�y�z�

�2�

=d� /2, and �ijk is the Levi-Civita tensor. The first three ele-
ments provide the achiral response of the particle while the
last element yields the chiral response. The form of the ex-
pression in Eq. �32� is similar to that previously derived in
Ref. 77 except for the presence of the chiral term �x�y�z�

�2� .
Note that if Kleinman symmetry78 is valid, �z�x�x�

�2� =�x�z�x�
�2�

and �x�y�z�
�2� =0. In general, the crystallographic axes �xi�� of

the medium are arbitrarily oriented with respect to the par-
ticle frame according to Eq. �8b� so that �ijk��2�

=�lmn
�2� Mli�Mmj� Mnk� , where �ijk��2� is the susceptibility in the par-

ticle frame. If the crystallographic and particle axes are
aligned with each other, i.e., Mij� =	ij, then �ijk��2�=�ijk

�2�. Con-
sequently, Eqs. �22�, �23�, and �32� yield

p = f�a�ŝ�ŝ · �̂0�2 + b�ŝ��̂0 · �̂0� + c��̂0�ŝ · �̂0�

+ d��ŝ · �̂0���̂0� ŝ�� . �33�

The form factor f provides the SHG dependence on the par-
ticle orientation and scattering-angle direction. For an object
of arbitrary size, f is maximized in the forward direction.
The term inside the bracket also provides information about
the dependence of the SHG signal on the particle orientation
through ŝ and, in addition, on the input polarization. Making
use of the vector properties of p, one may be able to deduce
all four independent nonlinear coefficients by applying, for
example, an appropriate input-polarization geometry that se-
lectively isolates or suppresses terms corresponding to the
four susceptibility elements in Eq. �33�. By examination of
Eq. �33�, a configuration with �̂0� ŝ may be employed to
obtain b�, whereas a configuration with �̂0 � ŝ may be used to
obtain an expression that relates the coefficients a�, b�, and

c�. Circular polarization may be adopted to suppress the b�
term since �̂0 · �̂0=0. By noting further that p is proportional
to the effective dipole moment and realizing that no radiation
is emitted along its direction, one may collect data along the
direction ŝ, �̂0, or �̂0� ŝ, which suppresses the nonlinear re-
sponse corresponding to a� and b�, c�, or d�, respectively,
according to Eq. �33�.

A scheme in SH microscopy of fibrous structures, e.g.,
fibrillar collagen, typically makes use of a configuration
where the cylindrical axis is set perpendicular to the beam
direction, and the radiated SH signal detected along the for-
ward or backward direction. Such a geometrical setup is a
special case of the last configuration described above, i.e.,
observation along the �̂0� ŝ direction.56,77,79–85 For this geo-
metrical arrangement, the chiral contribution to the SH signal
vanishes since �̂0� ŝ lies along ẑ. However, we also see from
Eq. �33� that provided �̂0 and ŝ are not perpendicular or
parallel, this chiral term may contribute to the total signal at
observation points slightly away from the z direction. Hence,
depending on the magnitude of �x�y�z�

�2� =d� /2, the contribu-
tion from this term may become appreciable when using
large numerical aperture lenses for collecting the SH signal.
Moreover in the forward direction, for a fixed input polariza-
tion and arbitrary particle angle �, it can be shown by means
of Eq. �33� that the maximum signal due to the chiral con-
tribution occurs when �=� /4. For the general case of the
crystallographic z� axis aligned arbitrarily relative to the par-
ticle axis, one needs to make use of the more general expres-
sion given by Eq. �23� in calculating the nonlinear form fac-
tor.

2. Radiation patterns: Examples

We now consider an example in calculating the SH radia-
tion patterns from a cylindrical object. We use the following
parameters: K1a=1 and �=3. These values may correspond
to the following optical and geometrical parameters: n=1.5,
�=800 nm, 2a�85nm, and L�255 nm. For the nonlinear
optical parameters, we consider two cases: �a� �z�z�z�

�2�

=�z�x�x�
�2� =�x�z�x�

�2� �0, �x�y�z�
�2� =0, and �b� �z�z�z�

�2� =�z�x�x�
�2�

=�x�z�x�
�2� =0, �x�y�z�

�2� �0. Cases �a� and �b� correspond to
purely achiral and purely chiral nonlinear optical responses,
respectively. We also assume that the crystallographic and
particle axes are aligned so that we may use Eq. �33� directly
by employing the following relations: a� /b�=−2, a� /c�=−1,
and d�=0, corresponding to case �a�. Figures 3 and 4 illus-
trate the effect of sample orientation and input polarization
on the radiation patterns. The first column schematically in-
dicates the particle orientation �� ,�� while the columns de-
noted by �a� and �b� display the polar plots of the SH radia-
tion pattern corresponding to cases �a� and �b� above without
polarization analysis, i.e., dP /d�� �E�2���2, along the scatter-
ing plane designated by the x-z plane. These figures clearly
demonstrate the complex nature of the SH scattering from
anisotropic particles such as the effect of the input polariza-
tion and particle orientation on the SH radiation pattern, in-
cluding its magnitude, symmetry, and directionality. In Fig.
3, both the input polarization and the particle axis lie perpen-
dicular to the scattering plane. Consequently, the resulting
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radiation patterns are symmetric with respect to the y-z
plane. For Fig. 4, both the input polarization and the particle
axis lie parallel to the scattering plane resulting in an asym-
metric radiation pattern except for particle orientations cor-
responding to �=0 or � /2. For arbitrary particle orientation,
the radiation pattern is generally peaked toward the forward
scattering direction although backward emission is also pos-
sible. This behavior arises mainly from the nature of the
linear form factor f whose maximum value occurs in the
forward scattering direction �q=0� for a cylindrical particle
of arbitrary size according to Eq. �17�. Note also in panel �b�
of both Figs. 3 and 4 that the forward scattering signal from
the chiral contribution peaks when �=� /4 as discussed
above.

B. Centrosymmetric case: Surface symmetry classes
C�, C6, and C4

1. Effective susceptibility tensor and associated form factors

For the case of a cylinder comprised of centrosymmetric
medium, we consider an isotropic surface lacking mirror
plane perpendicular to the surface, corresponding to the sym-
metry class C�, or a surface that exhibits either of the crys-
talline point group symmetry classes C4 or C6, since for
these latter two classes, the nonvanishing nonlinear suscep-

tibility elements are identical to those of C� class. To obtain
the nonlinear response, we need to express the various com-
ponents of Eq. �6� or Eq. �26� in terms of the local coordi-
nates of the surface. The surface nonlinear susceptibility el-
ements are given by

�s,������
�2� , �s,������

�2� = �s,��z�z�
�2� ,

�s,������
�2� = �s,z���z�

�2� , �s,��z���
�2� = − �s,z�����

�2� , �34a�

�s,z�z�z�
�2� , �s,z�x�x�

�2� = �s,z�y�y�
�2� ,

�s,x�z�x�
�2� = �s,y�z�y�

�2� , �s,x�y�z�
�2� = − �s,y�x�z�

�2� , �34b�

for the cylinder’s curved surface and flat sides, respectively.
Although the indices of the tensor elements may be used to
distinguish whether they arise from the curved or flat portion
of the cylinder �using cylindrical or Cartesian coordinates,
respectively�, a possible source of confusion may arise from
the term �s,z�z�z�

�2� for the case of arbitrary surface symmetry
since this term is present in both regions of the cylinder;
thus, care should be taken when considering the most general
symmetry case. This ambiguity may be eliminated by ex-
pressing the independent nonlinear susceptibility elements as
�s,���

�2� , �s,�� �
�2� , �s,���

�2� , and �s,�//�
�2� , where � and � denote the

(a) (b)x

y
z

x

y
z

(a) (b)x

y
z

x

y
z

FIG. 3. Radiation patterns for input-field polarization and par-
ticle axes both perpendicular to scattering plane defined by the x-z
plane ��̂0= ŷ, �=� /2� for size parameters K1a=1 and �=3 for a
finite cylinder comprised of noncentrosymmetric medium. First col-
umn �top to bottom�: �=0, � /8, � /4, 3� /8, � /2. �a� Middle col-
umn: �z�z�z�

�2� =�z�x�x�
�2� =�x�z�x�

�2� �0 and �x�y�z�
�2� =0; �b� right column:

�z�z�z�
�2� =�z�x�x�

�2� =�x�z�x�
�2� =0 and �x�y�z�

�2� �0. Inset: magnified view of
corresponding plot.

FIG. 4. Radiation patterns using the same geometric, size, and
nonlinear optical parameters as in Fig. 3 but with input-field polar-
ization and particle axes both parallel to scattering �x-z� plane ��̂0

= x̂, �=0� for a finite cylinder comprised of noncentrosymmetric
medium. �a� Middle column: �z�z�z�

�2� =�z�x�x�
�2� =�x�z�x�

�2� �0 and
�x�y�z�

�2� =0; �b� right column: �z�z�z�
�2� =�z�x�x�

�2� =�x�z�x�
�2� =0 and �x�y�z�

�2�

�0. Inset: magnified view of corresponding plot. Note each lower
half of the plots corresponds to scattering angles �=� and 0 
 �.
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local coordinates parallel and perpendicular to the surface.
The symbol // is used in addition to the symbol � to distin-
guish between the two orthogonal coordinates parallel to the
surface. We employ these symbols to describe the local co-
ordinates from either the flat or curved portions of the cylin-
der. The susceptibility element �s,�//�

�2� is the chiral term, and,
if �� , / / ,�� forms a right-handed coordinate system, �s,�//�

�2�

=−�s,//��
�2� . Compiling the contributions from Eqs. �25�, �27�,

and �28�, we obtain pi�=�ijk
effE jEk, where �ijk

eff is the effective
nonlinear susceptibility, which may be written as

�ijk
eff =

sin�Q3�a�
Q3�a

�
n=0

3

!ijk,n
Jn�	0�
	0

n . �35�

The coefficients !ijk,n are presented in Table I. By compari-
son of Eq. �35� with Eq. �19�, the products fn
= �sin�Q3�a� / �Q3�a���2nn !Jn�	0� /	0

n�, where n=0, 1, 2, and
3, may be defined, albeit somewhat arbitrary, as the various
“linear” form factors responsible for SH scattering from fi-
nite cylinders comprised of centrosymmetric media. Note
that an extra factor of 2nn! is included in the definition of fn
so that in the limit as q→0, fn approaches unity as in the
case of the linear optical form factor defined in Eq. �17�. The
form factor fn is further modified by the coefficient !ijk,n that
is a linear combination of �Qma�n where m=1, 2, or 3.

Despite the assumption of a general isotropic surface that
lacks mirror symmetry, where only four independent surface
nonlinear susceptibility elements exist as listed in Eqs. �34a�
and �34b�, Table I reveals that all 18 effective susceptibility

tensor elements are nonvanishing and independent. This re-
sult is noteworthy since for the case of a sphere comprised of
centrosymmetric medium with arbitrary surface symmetry,
only four effective susceptibility elements are nonvanishing
and independent, as obtained in Appendix B. These four el-
ements, denoted by �̃ijk

eff for the sphere, are listed in Table II.
For the corresponding case of SFG from a sphere comprised
of centrosymmetric medium, seven independent effective
susceptibilities are nonvanishing, which arise from 27 inde-
pendent surface susceptibility components.54 When Klein-
man symmetry is valid and �=0, it can be shown by inspec-
tion of Table I that the number of effective susceptibility
elements for SHG reduces from 18 to 9 and, in addition, the
effective susceptibility elements themselves obey the Klein-
man symmetry condition, i.e., the interchange of indices
does not alter the effective susceptibility element. In com-
parison, for the case of a sphere of centrosymmetric medium,
when �=0 and the surface nonlinear susceptibility elements
obey the Kleinman symmetry condition, the resulting num-
ber of effective nonlinear susceptibility elements reduces
from four to two, with the elements themselves also obeying
the Kleinman symmetry condition. The large disparity in the
number of effective nonlinear optical susceptibility elements
between the cylinder and the sphere is clearly indicative of
the strong effect of the intrinsic anisotropy of the cylinder.

2. Source and emission characteristics

We now briefly comment on the source and emission
characteristics of the SH scattering process from cylinders.

TABLE I. Coefficients !ijk,n for the effective susceptibility �ijk
eff

= �sin�Q3�a� / �Q3�a���n=0
3 !ijk,nJn�	0� /	0

n of a finite cylinder of radius a and length L, comprised of cen-
trosymmetric medium with isotropic surface lacking mirror symmetry, where �=L /2a, 	0=Qa, �1

=3�s,���
�2� +�s,�� �

�2� +2�s,���
�2� +4�, �2=�s,���

�2� +3�s,�� �
�2� −2�s,���

�2� +4�, and �3=�s,���
�2� −�s,�� �

�2� −2�s,���
�2� . Indi-

ces ijk of ! are suppressed for simplicity.

ijk !0 !1 !2 !3

x�x�x� �i /2�Q1�1 −�i /2��Q1
3−3Q1Q2

2�a2�3

x�x�y� �i /4�Q2��1−�2� �i /2��Q2
3−3Q2Q1

2�a2�3

x�x�z� 2iQ3�s,���
�2� 2Q1Q2a�s,�//�

�2�

x�y�y� �i /2�Q1�2 �i /2��Q1
3−3Q1Q2

2�a2�3

x�y�z� −�s,�//�
�2� /a 2iQ3�s,�//�

�2� −�Q1
2−Q2

2�a�s,�//�
�2�

x�z�z� 2iQ1��s,�� �
�2� +��

y�x�x� �i /2�Q2�2 �i /2��Q2
3−3Q2Q1

2�a2�3

y�x�y� �i /4�Q1��1−�2� �i /2��Q1
3−3Q1Q2

2�a2�3

y�x�z� �s,�//�
�2� /a −2iQ3�s,�//�

�2� −�Q1
2−Q2

2�a�s,�//�
�2�

y�y�y� �i /2�Q2�1 −�i /2��Q2
3−3Q2Q1

2�a2�3

y�y�z� 2iQ3�s,���
�2� −2Q1Q2a�s,�//�

�2�

y�z�z� 2iQ2��s,�� �
�2� +��

z�x�x� 2iQ3��s,�� �
�2� +�� −4Q1Q2a�s,�//�

�2�

z�x�y� 2�Q1
2−Q2

2�a�s,�//�
�2�

z�x�z� 2iQ1�s,���
�2�

z�y�y� 2iQ3��s,�� �
�2� +�� 4Q1Q2a�s,�//�

�2�

z�y�z� 2iQ2�s,���
�2�

z�z�z� 2iQ3��s,�� �
�2� +��
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The observations we state here are valid not only for the
general isotropic surface described above but also for the
case of arbitrary surface symmetry. All of the 18 independent
effective nonlinear susceptibility elements are nonvanishing,
and may be expressed in terms of both the wave-vector trans-
fer factors Qi and the Bessel functions Jn�	0�. The contribu-
tions from the curved and flat portions of the cylinder, which
may be distinguished by the presence of the coefficient Qi
�i=1 or 2 for the curved region and i=3 for the flat sides�,
have different emission characteristics. In particular, the sur-
face nonlinear polarization from the flat sides radiates only
with the form factor f1�J1�	0�, as in the case of a cylinder
comprised of noncentrosymmetric medium. In contrast, the
nonlinear optical sources from the curved surface may expe-
rience multiple form factors proportional to J0�	0�, J1�	0�,
J2�	0�, or J3�	0�. The contribution from the nonlocal bulk
susceptibility � is found to radiate only with the form factor
f1�J1�	0�. It has been shown previously that the term � may
be represented by an equivalent surface nonlinear optical
susceptibility with nonvanishing components ��s,�

�2�����

= ��s,�
�2���� � =�.6,86 Thus, in evaluating the total nonlinear form

factor p=ps+pb �Eq. �24��, one needs only to calculate ps,
and then make the replacements �s,���

�2� →�s,���
�2� +� and

�s,�� �
�2� →�s,�� �

�2� +�, in order to take into account the bulk
term �. As a consequence, the nonlocal bulk term � contrib-
utes only to nine effective susceptibility elements of the form
�ij j

eff according to Eq. �25�. The bulk-surface inseparability of
the � and the surface nonlinear susceptibilities �s,���

�2� and
�s,�� �

�2� is reflected in Tables I–III.

3. Radiation patterns: Examples

Using the same dimensions of the cylinder presented in
Figs. 3 and 4 for the case of noncentrosymmetric medium,
we now plot the corresponding SH radiation patterns in Figs.
5 and 6 for the case of centrosymmetric medium. For illus-
tration purposes as well as a comparison with the noncen-
trosymmetric cases discussed above, we assume the follow-
ing sets of the surface nonlinear optical parameters: �a�
�s,���

�2� =�s,�� �
�2� =�s,���

�2� �0, �s,�//�
�2� =0, �=0 and �b� �s,���

�2�

=�s,�� �
�2� =�s,���

�2� =0, �s,�//�
�2� �0, �=0, to illustrate cases with

pure achiral and chiral responses, respectively. Figures 5 and
6 display the SH radiation patterns without polarization
analysis corresponding to the cases �a� and �b� above as a

function of the particle orientation using the same input-
polarization conditions employed in Figs. 3 and 4. Note, as
in Fig. 3, the resulting radiation patterns in Fig. 5 are sym-
metric with respect to the y-z plane, while, as in Fig. 4, the
radiation patterns in Fig. 6 for particle orientations corre-
sponding to ��0 or � /2 are asymmetric. In contrast to the
noncentrosymmetric case where forward emission domi-
nates, for arbitrary particle orientation, the achiral suscepti-

TABLE II. Coefficients !̃ijk,n of the effective susceptibility, �̃ijk
eff=�n=0

3 !̃ijk,nJ�n+1�/2�	� /	�n+1�/2, of a sphere
of radius a comprised of centrosymmetric medium with arbitrary surface symmetry, where 	=qa, �̃11

=�s,r�r�r�
�2� −�s,r���

�2� −2�s,�r��
�2� , �̃12=�s,��r�

�2� +�s,����r�
�2� , �̃13=�s,r���

�2� +�s,r�����
�2� +2�, �̃21=�s,���

�2� −�s,�r�r�
�2�

−2�s,r��r�
�2� , �̃22=�s,�����

�2� +�s,r��r�
�2� , �̃23=�s,�����

�2� +�s,�r�r�
�2� , �̃31=�s,���r�

�2� −�s,���r�
�2� , �̃32=2�s,���r�

�2� −�s,���r�
�2�

−�s,r����
�2� , and �̃33=−�s,����

�2� +�s,����
�2� −�s,��r�r�

�2� +�s,r���r�
�2� . Indices ijk of !̃ are suppressed for simplicity.

Note �̃x�y�z�
eff =−�̃y�x�z�

eff .

ijk !̃0 !̃1 !̃2 !̃3

x�z�x�, y�z�y� �−3i / a ��� / 2 �̃11 /	 −3���̃21+ �̃22� / �4a� �3i / 2a ��� / 2 �6�̃11+ �̃12	
2� /	 9��̃21 / �4a�

z�x�x�, z�y�y� �−3i / a ��� / 2 �̃11 /	 −3���̃21+ �̃23� / �4a� �3i / 2a ��� / 2 �6�̃11+ �̃13	
2� /	 9��̃21 / �4a�

z�z�z� �6i / a ��� / 2 �̃11 /	 3���̃21−�s,���
�2� � / �2a� �−3i / a ��� / 2 �6�̃11−�s,r�r�r�

�2� 	2� /	 −9��̃21 / �2a�
x�y�z�,
�−�y�x�z� �3 / 2a ��� / 2 �̃31 �3 / a ��� / 2 �̃32 3�i	�̃33 / �4a�

TABLE III. Effective susceptibility elements, �ijk
eff, for a small

�Rayleigh limit� finite cylinder comprised of centrosymmetric me-
dium with arbitrary surface symmetry, where �11= �3�s,������

�2�

+�s,������
�2� +2�s,������

�2� +4��, �12= ��s,������
�2� +3�s,������

�2� −2�s,������
�2�

+4��, �21= ��s,������
�2� +3�s,������

�2� −2�s,������
�2� �, and �22= �3�s,������

�2�

+�s,������
�2� +2�s,������

�2� �. Only the contributions from the curved part
of the cylinder are explicitly shown since the contributions from its
circular caps and the associated bulk component � are expressed
simply as i��s,ijk

�2� +�	i3	 jk�Q3. The terms �ijk
FE are defined in Eqs.

�36a�–�36d�.

ijk �ijk
eff− i��s,ijk

�2� +�	i3	 jk�Q3

x�x�x� �i /4���11Q1−�22Q2�
x�x�y� �i /8����22−�21�Q1+ ��11−�12�Q2�
x�x�z� �x�x�z�

FE

x�y�y� �i /4���12Q1−�21Q2�
x�y�z� �x�y�z�

FE

x�z�z� i���s,��z�z�
�2� +��Q1−�s,��z�z�

�2� Q2�
y�x�x� �i /4���21Q1+�12Q2�
y�x�y� �i /8����11−�12�Q1− ��22−�21�Q2�
y�x�z� �y�x�z�

FE =−�x�y�z�
FE

y�y�y� �i /4���22Q1+�11Q2�
y�y�z� �y�y�z�

FE =�x�x�z�
FE

y�z�z� i��s,��z�z�
�2� Q1+ ��s,��z�z�

�2� +��Q2�
z�x�x� �z�x�x�

FE

z�x�y� �z�x�y�
FE =0

z�x�z� i��s,z���z�
�2� Q1−�s,z���z�

�2� Q2�
z�y�y� �z�y�y�

FE =�z�x�x�
FE

z�y�z� i��s,z���z�
�2� Q1+�s,z���z�

�2� Q2�
z�z�z� �z�z�z�

FE
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bility elements �s,���
�2� , �s,�� �

�2� , and �s,���
�2� do not radiate in the

forward direction, as shown in column �a� of Figs. 5 and 6.
This property may also be seen directly from Table I: For the
achiral response, the leading-order contribution to the SHG
signal corresponds to !ijk,1�Qm �m=1,2, or 3�, which van-
ishes in the forward direction. In addition, relatively strong
backward emission, for example, is observed for �=� /2 for
this size parameter considered. The chiral component �s,�//�

�2� ,
on the other hand, yields prominent emission in the forward
direction as we have shown above.

C. Special geometries

An examination of the nonlinear form factor in Eq. �6�
reveals that pertinent limiting cases become apparent by con-
sidering the condition q ·r��1, which may be satisfied by
employing the forward scattering geometry �q=0� or by
probing small particles such that r��qmax

−1 , where qmax
=2K1. In the discussions below, we assume all 18 indepen-
dent nonlinear susceptibility elements to be nonvanishing for
both noncentrosymmetric and centrosymmetric media.

1. Forward scattering: q=0

Let us first consider the case of noncentrosymmetric me-
dium. In the forward direction, recall that f =1, hence p

=�0 using Eq. �16�. We see from this simple result that the
maximum signal is expected for the forward scattering ge-
ometry. The measured SH signal in the forward scattering
direction is ultimately determined by the term �0 according
to Eq. �18�, i.e., the crystallographic orientation of the par-
ticle and the polarization state of the fundamental field. It
should be noted, however, that the condition f �1 is also
possible at other scattering directions, in particular, when the
particle dimensions are much smaller than the wavelength of
light; this case is discussed in Sec. III C 2. The condition f
=1 �or f �1 for small particles in the Rayleigh limit� pro-
vides a convenient means of probing or deducing the crys-
tallographic directions without interference effects. These ef-
fects occur, for example, when SH signals are recorded at
directions away from the forward scattering direction. In ad-
dition, they arise from the part of the form factor associated
with the length of the cylinder, i.e., sin�Q3�a� / �Q3�a�
=sinc�Q3�a�, which is an oscillatory function of �Q3�a�.
This characteristic behavior is in accord with a recent experi-
mental SH study, which reported the observation of decreas-
ing number of fringes as the length of a cylindrical particle is
reduced.44 Note further that the nonlinear form factor for the
centrosymmetric case also depends on sinc�Q3�a� through
Eqs. �25�, �27�, and �28�, which underscores the effect of a
cylinder’s finite length on its nonlinear optical response.

FIG. 5. Radiation patterns for input-field polarization and par-
ticle axes both perpendicular to scattering plane defined by the x-z
plane ��̂0= ŷ, �=� /2� for size parameters K1a=1 and �=3 for a
finite cylinder comprised of centrosymmetric medium. First column
�top to bottom�: �=0, � /8, � /4, 3� /8, � /2. �a� Middle column,
�s,z�z�z�

�2� =�s,z�x�x�
�2� =�s,x�z�x�

�2� �0, �s,x�y�z�
�2� =0, and �=0; �b� right col-

umn, �s,z�z�z�
�2� =�s,z�x�x�

�2� =�s,x�z�x�
�2� =0, �s,x�y�z�

�2� �0, and �=0. Insets:
magnified views of corresponding plots.

FIG. 6. Radiation patterns using the same geometric, size, and
nonlinear optical parameters as in Fig. 5 but with input-field polar-
ization and particle axes both parallel to scattering �x-z� plane ��̂0

= x̂, �=0� for a finite cylinder comprised of centrosymmetric me-
dium. �a� Middle column: �s,z�z�z�

�2� =�s,z�x�x�
�2� =�s,x�z�x�

�2� �0, �s,x�y�z�
�2�

=0, and �=0; �b� right column: �s,z�z�z�
�2� =�s,z�x�x�

�2� =�s,x�z�x�
�2� =0,

�s,x�y�z�
�2� �0, and �=0. Note each lower half of the plots corresponds

to scattering angles �=� and 0  �.
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The case of the centrosymmetric medium is more com-
plex compared to the noncentrosymmetric case. Consider the
various components of p=ps

flat+ps
curved+pb. In the forward

direction, pb=ps
flat=0 since q=0, as seen in Eqs. �25� and

�27�. The remaining contribution, ps
curved, is evaluated by us-

ing the terms In defined in Eqs. �30a�–�30d�. For q=0 and
using the properties of Jn�u� as u→0, i.e., Jn�u�
��un /2nn!�, we obtain I0=2�, I1=0, I2= �A1A2+B1B2��,
and I3=0. The nonvanishing terms I0 and I2 correspond to
the following eight independent nonlinear susceptibility ele-
ments with indices given by ����z�, ����z�, ����z�, ����z�,
z�����, z�����, z�����, and z�z�z�. Of these eight terms, the
contribution due to the component �s,z�����

�2� vanishes upon
evaluation of Eq. �29�, thus leaving seven susceptibility ele-
ments that may give rise to forward emission; its contribu-
tion to the corresponding SFG process, however, is nonvan-
ishing. To understand the physical significance of these
surface susceptibility terms, we evaluate p for the forward
scattering geometry, for which we obtain pi�=�ijk

FEE jEk, where
�ijk

FE is the effective nonlinear susceptibility tensor element
responsible for SH forward emission. Explicitly,

�z�z�z�
FE =

2

a
�s,z�z�z�

�2� , �36a�

�z�x�x�
FE = �z�y�y�

FE =
1

a
��s,z�����

�2� + �s,z�����
�2� � , �36b�

�x�x�z�
FE = �y�y�z�

FE =
1

a
��s,����z�

�2� + �s,����z�
�2� � , �36c�

�x�y�z�
FE = − �y�x�z�

FE =
1

a
��s,����z�

�2� − �s,����z�
�2� � . �36d�

Thus, in the forward scattering direction, the seven special
surface nonlinear susceptibility elements above give rise to
an effective nonlinear susceptibility tensor having four inde-
pendent elements, which resembles the nonlinear optical re-
sponse of a material system possessing C� symmetry. The
four terms in Eqs. �36a�–�36d� are analogous to the bulk
nonlinear susceptibility elements in Eq. �32�. Note that for
forward emission, the SH radiation arises from the curved
portion of the cylinder. Note further that the corresponding
set of susceptibilities residing in the flat portions of the cyl-

inder do not give rise to forward emission since Q3=0, as
can be seen from Eq. �27�.

2. Rayleigh particles, wires, and disks

To describe the nonlinear optical response of a small par-
ticle in the Rayleigh limit, with a and L��, one may employ
the properties of Jn�u� and sin u /u for small arguments �u
�1�. For both cases of noncentrosymmetric and centrosym-
metric media, the nonlinear form factor pRayleigh may be ex-
pressed in terms of the effective susceptibility �ijk

eff with re-
spect to the particle frame, and its ith component is given by

pi�
Rayleigh = �ijk

effE jEk. �37�

For the noncentrosymmetric medium, f �1; thus, using Eq.
�23�, we obtain �ijk

eff=�ijk��2�=�lmn
�2� Mli�Mmj� Mnk� , and in addition,

the maximum possible signal is no longer restricted to for-
ward scattering as seen in larger particles. Thus, the scatter-
ing efficiency in other directions �including backscattering�
increases as the dimensions decrease, and the signal strength
depends on the crystallographic orientation, the polarization
conditions, as well as the scattering direction since p��0.
For the case of centrosymmetric medium with arbitrary sur-
face symmetry, the various elements of �eff are listed in
Table III. The element �ijk

eff depends on both the scattering
directions and the particle’s orientation through Qi=Mij�qj.
There are 18 independent and nonvanishing effective suscep-
tibility elements that arise from the flat surfaces of the cyl-
inder, and are evaluated to be i��s,ijk

�2� +�	i3	 jk�Q3, for all
�i , j ,k�. Thus we show explicitly only the contributions from
the curved surface in Table III. For the case of a small sphere
in the Rayleigh limit, comprised of centrosymmetric me-
dium, one may show using Table II that the number of inde-
pendent effective susceptibility elements �̃ijk

eff remains four.
We now consider how the SH field scales with the dimen-

sions and wavelength for small finite cylinders and spheres
in the Rayleigh limit. In the discussion below, V denotes the
volume of the particle, and A refers to either the area of the
cylindrical wall or the total area for the case of the cylinder
or sphere, respectively. The results are summarized in Table
IV. According to Eq. �7�, the SH field magnitude is propor-
tional to �K2Vp where p is the magnitude of the nonlinear
form factor. For a small particle of noncentrosymmetric me-
dium, p���0�. Consequently, for a cylinder or a sphere,
E�2���V /�2, which is the same as the scaling for linear op-

TABLE IV. Leading-order scaling of SH field E�2�� for small particles in the Rayleigh limit. Note V
denotes the volume of the particle, and A�aL and a2 for the cylinder and sphere, respectively. The forward
emitting surface nonlinear optical susceptibility elements are presented in Sec. III C 1.

Bulk symmetry Shape E�2�� Sources

Noncentrosymmetric Cylinder, sphere V /�2 Bulk �ijk
�2�

Centrosymmetric Cylinder A /�2 Forward emitting �s,ijk
�2�

V /�3 Nonforward emitting �s,ijk
�2� , bulk �

Sphere A /�2 Nonisotropic �s,ijk
�2�

V /�3 Isotropic �achiral� �s,ijk
�2� , bulk �

A2 /�4 Isotropic �chiral� �s,ijk
�2�
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tical scattering for small cylinders or spheres. For a small
cylinder of centrosymmetric medium, an inspection of Table
III and Eq. �36� reveals that the SH field scales either as
�V /�3 or �A /�2, depending on the type of surface nonlin-
ear optical source. The scaling corresponding to E�2��

�V /�3 originates from the set of nonlinear susceptibilities
that do not contribute to forward emission. The scaling cor-
responding to E�2���A /�2 is obtained when one of the non-
linear susceptibilities responsible for the SH forward scatter-
ing is present, e.g., the surface chiral susceptibility �s,�//�

�2� .
For a small sphere of centrosymmetric medium, a similar
behavior to that of a cylinder is obtained, wherein two dis-
tinct groups of nonlinear susceptibility elements yield differ-
ent responses. In the limit of a�� in Table II, one may show
that for a sphere possessing a general isotropic surface whose
nonlinear susceptibility elements are �s,���

�2� , �s,�� �
�2� , �s,���

�2� ,
and �s,�//�

�2� =−�s,//��
�2� , the SH field scales as E�2���V /�3. This

result has also been proven for arbitrary index mismatch in
Ref. 23. For this leading-order term, the isotropic chiral con-
tribution vanishes, but its lowest-order contribution to the SH
signal corresponds to the scaling E�2����A /�2�2. For noniso-
tropic sources, the field scales as E�2���A /�2. We now sum-
marize the results for cylinders and spheres comprised of
centrosymmetric medium in terms of two relevant observa-
tions. First, the small-particle scaling of the field E�2�� de-
pends on the surface symmetry. For example, a seemingly
simple system such as the small sphere may exhibit field
dependence E�2����A /�2� when the surface is locally aniso-
tropic, instead of the expected E�2���V /�3, when the surface
is locally isotropic. The second observation pertains to the
response of small cylinders and spheres that possess isotro-
pic surfaces: For the case of the cylinder, E�2����A /�2�,
which is dominated by the surface chiral susceptibility
�s,�//�

�2� , whereas for the sphere, E�2���V /�3, which is domi-
nated by the surface achiral sources �s,���

�2� , �s,�� �
�2� , and

�s,���
�2� .

For the case of wires or disks, one may also obtain sim-
plified expressions for the nonlinear form factor. For wires
with a�� and arbitrary length L, we have

pwire =
sin�Q3�a�

Q3�a
pRayleigh. �38�

The vector pRayleigh is given by Eq. �37�. For noncentrosym-
metric medium, the effective susceptibility is given by �ijk

eff

=�lmn
�2� Mli�Mmj� Mnk� ; for centrosymmetric medium, �ijk

eff is given
by Table III. For the case of disks, where L�� and a is
arbitrary, the term sin�Q3�a� / �Q3�a��1 so that the nonlin-
ear form factor becomes

pdisk =
2J1�Qa�

Qa
�0, �39a�

pdisk = i����̂0 · �̂0�q + Q3�Js
�2�:�̂0�̂0�

2J1�Qa�
Qa

+
�

�a

�39b�

for �a� noncentrosymmetric and �b� centrosymmetric media,
respectively.

D. Role of surface chirality

We now discuss a topic of considerable significance: the
chiral nature of the surface nonlinear optical response.87–92

Let us first examine the case of a cylinder comprised of
centrosymmetric medium with an isotropic surface lacking
mirror symmetry, which we have considered in Sec. III B
above. By inspection of Table I, we find that the “chiral”
effective susceptibility elements having indices x�y�z�,
y�z�x�, and z�x�y� are derived purely from the chiral surface
susceptibility element �s,�//�

�2� . In contrast to the case of the
sphere of centrosymmetric medium, this specific set of effec-
tive susceptibilities does not obey the standard chiral sym-
metry rules for SHG within the dipole approximation, given
by

�x�y�z�
eff = − �y�x�z�

eff , �z�x�y�
eff = 0. �40�

When Q1=�Q2, Eq. �40� is obeyed and an effective chiral
axis is established along the particle axis ẑ�. The condition
Q1=�Q2 may be satisfied by choosing an appropriate com-
bination of particle orientation and scattering directions. A
trivial scheme that achieves this condition is the forward
emission geometry, i.e., q=0. Further examination of Table I
shows that Eq. �40� may also be satisfied approximately for
arbitrary scattering directions under certain dimensional con-
straints, for example, the condition a��. Thus, another
means of making a cylindrical particle appear chiral in terms
of its nonlinear response is to make use of thin wires.

The employment of the two special geometrical configu-
rations, i.e., forward scattering direction and thin wire di-
mensions, in order to imbue the cylinder with an effective
chiral nonlinear optical response, is valid even for the case of
arbitrary surface symmetry. For arbitrary emission directions
and cylinder dimensions, it may be shown using Eqs. �27�
and �29� that the effective susceptibility elements �x�y�z�

eff and
�y�x�z�

eff become linear combinations of chiral and achiral sur-
face susceptibility elements �s,ijk

�2� having the indices ����z�,
����z�, ����z�, ����z�, x�y�z�, and y�x�z�, with the last two
terms originating from the end caps. Similarly �z�x�y�

eff be-
comes a linear combination of elements with indices z�����,
z�����, z�����, and z�x�y�. By means of Eq. �36d� for for-
ward emission, Eq. �40� is strictly obeyed, where �x�y�z�

eff

=�x�y�z�
FE . By means of Eq. �38�, together with Table III for

thin wires, Eq. �40� is approximately satisfied, where
�x�y�z�

eff ��x�y�z�
FE sin�Q3�a� / �Q3�a�. In both cases, the geo-

metrical chiral axis is established along the cylindrical axis
and, in addition, the signal arises purely from the surface
susceptibility components �s,����z�

�2� and �s,����z�
�2� .

For comparison, consider a sphere of centrosymmetric
medium with arbitrary surface symmetry. From Table II, the
independent effective chiral susceptibility elements for the
sphere also obey Eq. �40�, with the geometrical effective
chiral axis along the q direction. As in the case of the cylin-
der, the effective susceptibility element �̃x�y�z�

eff of the sphere
is a linear combination of various surface chiral and achiral
susceptibility elements. It comprises nonlinear susceptibility
elements with the indices ���r�, ���r�, r����, ����,
����, ��r�r�, and r���r�.
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One significant consequence of the results above is that
SHG may be used to probe chiral molecules adsorbed on a
single cylindrical or spherical particle. Note that randomly
oriented chiral molecules in solutions do not yield SHG
whereas SFG is possible.88–92 Thus, adsorption of chiral mol-
ecules onto a cylindrical or spherical particle of centrosym-
metric medium may serve as a means to probe chiral mol-
ecules by SHG. There are, however, key differences between
the cylinder and sphere as templates for studying chiral mol-
ecules. First, for a cylinder, the chiral axis may be estab-
lished along the cylindrical axis by geometrical means, e.g.,
by forward emission or by use of thin wires at arbitrary scat-
tering angles. For a sphere, the effective chiral axis is estab-
lished along the q direction, a property that is true for all
scattering angles and particle size. Second, for forward scat-
tering, the cylinder’s effective nonlinear chiral response de-
pends on pure surface chiral elements. The nonlinear chiral
response of the sphere, on the other hand, vanishes in the
forward direction since in the limit as →0, the vector q,
which defines the geometrical chiral axis, becomes coplanar
with the input-polarization vectors, which, for SHG, are de-
generate. Note also that within the RGD approximation for
the corresponding surface SFG chiral response from a
sphere, the signal vanishes for collinear input beams in the
forward direction; if the two input beams are noncollinear
and their polarization vectors are orthogonal, the SFG signal
in the “forward” direction �q=0� becomes allowed.54 At
other scattering directions, the effective SH chiral response
of the sphere arises from a mixture of chiral and achiral
surface contributions. Third, for the case of small dimensions
in the Rayleigh limit, or more generally, wires for the case of
cylinders, the effective chiral nonlinear response from both
particles depends on pure surface chiral elements: For the
wire, �x�y�z�

eff
� ��s,����z�

�2� −�s,����z�
�2� � �from Eq. �36d��, whereas

for the sphere, the leading-order term is given by �̃x�y�z�
eff

�

�−2�s,r����
�2� +�s,���r�

�2� +�s,���r�
�2� � using Table II. Note that for

the case of a general isotropic surface symmetry �without
mirror plane�, the leading-order element �x�y�z�

eff of the cylin-
der is nonzero but the corresponding term for the sphere,
�̃x�y�z�

eff , vanishes. From Table IV, the leading-order contribu-
tion of surface chirality for an isotropic surface yields the
scaling E�2���A /�2 and �A2 /�4, for the case of the cylinder
and the sphere, respectively; i.e., in the Rayleigh limit for
these two types of particles, the SH signal arising from chiral
contributions is significantly weaker from spheres than from
cylinders of comparable dimensions. Hence, in comparison
to a sphere, the cylindrical particle may be a more suitable
template for investigating surface chirality by SHG.

As we have shown above, the forward scattering direction
may serve to isolate the chiral contribution by using appro-
priate particle and input-polarization directions. This prop-
erty may find application in probing anisotropic particles of
similar composition but having dissimilar topology, e.g., car-
bon nanotubes �CNTs�, which exhibit chiral or achiral struc-
tural properties. Recently, theoretical studies have shown that
the hyperpolarizability of a CNT may depend on its topologi-
cal symmetry. For example within the dipole approximation,
achiral and chiral CNTs yield zero and nonzero hyperpolar-
izabilities, respectively.93 It has also been shown that tor-

sional strain applied to achiral CNTs may generate a dipolar
second-order nonlinear response.65 Recently SHG from
CNTs have been demonstrated experimentally, opening the
possibility of investigating their topology and electronic
structure by nonlinear optical scattering.46,94,95

As a final comment, it should be pointed out that the
achiral effective nonlinear susceptibility elements of the cyl-
inder might originate from both the achiral and chiral surface
susceptibilities. For example, in the case of a general isotro-
pic surface considered in Sec. III B above, �x�z�x�

eff stems from
two surface contributions: �s,���

�2� and �s,�//�
�2� . This observation

of mixing chiral and achiral surface elements to yield an
effective achiral nonlinear susceptibility is not unique to the
case of centrosymmetric medium. In particular, inspection of
Eq. �23� shows that for the noncentrosymmetric case, any
effective nonlinear susceptibility element �ijk

eff may arise from
any of the bulk susceptibility elements �ijk

�2�.

E. Linear-polarization dependence: isotropic
vs anisotropic response

As we have shown above, the nonlinear response of an
anisotropic structure, in terms of the number of the effective
susceptibility elements and its source-emission characteris-
tics, is considerably different from that of an isotropic sys-
tem, i.e., a sphere of centrosymmetric medium. We now ex-
amine the polarization dependence of these two types of
particles. Consider an input polarization described by �̂0
=cos "x̂+sin "ŷ, and Ei=Mij��0j represents the polarization
in the particle frame. We find that the nonlinear form factor
component pi�=�ijk

effE jEk is proportional to a linear combina-
tion of cos2 ", sin2 ", and cos " sin ". Consequently, the
SHG power at any scattering direction may be expressed as
P�=a1 cos4 "+a2 sin4 "+a3 cos2" sin2 "+a4 cos3 " sin "
+a5 cos " sin3 ", where ai are coefficients that depend on
the scattering angles. This functional dependence has previ-
ously been presented for the case of SHG from spheres.26

This equation may be expressed in terms of linearly indepen-
dent functions �cos�m"� , sin�m"�� with m=0,2 ,4. Thus
equivalently,

P� = c1 + c2 cos 2" + c3 cos 4" + c4 sin 2" + c5 sin 4" ,

�41�

where the coefficients ci depend on the scattering angles.
We now compare this result to a sphere comprised of

centrosymmetric medium. It can be shown using Table II and
Eq. �7� that if the effective nonlinear response is either
purely achiral ��̃x�y�z�

eff =0� or purely chiral ��̃z�z�z�
eff = �̃z�x�x�

eff

= �̃x�z�x�
eff =0� the radiated power P�� �p�2+ �p��2, where p

and p� are the transverse components of p in the laboratory
frame, may be written as

P� = d1 + d2 cos 2�" − �� + d3 cos 4�" − �� , �42�

where the coefficients di depend on . This result also
emerges from the RGD discussion in Refs. 23 and 96 for the
case of purely achiral isotropic surface contributions. The
present calculation, however, includes all surface nonlinear
susceptibility elements responsible for either the achiral or
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chiral effective nonlinear response of the sphere. If �=0 or
� /2, or equivalently, if the input-polarization angle is refer-
enced relative to the principal scattering planes, i.e., with
respect to a plane parallel or perpendicular to the scattering
plane, the overall polarization dependence of the scattered
SH power from a sphere of centrosymmetric medium having
either a pure achiral or chiral effective response may be writ-
ten as

P� = c1 + c2 cos 2" + c3 cos 4" . �43�

For the case of the cylinder with centrosymmetric medium,
however, its general polarization response is given by Eq.
�41� because of its intrinsic anisotropy. Hence, by compari-
son of Eqs. �41� and �43�, the functional dependences sin 2"
and sin 4" of the radiated power in Eq. �41� may be consid-
ered as terms associated with anisotropy, whether it pertains
to structure or symmetry of the particle medium, or with
mixed achiral and chiral response, for the case of a sphere of
centrosymmetric medium. As a final note, for a sphere of
centrosymmetric medium but with arbitrary surface re-
sponse, which includes the chiral term �̃x�y�z�

eff , the quantity
�p�2= �p�2+ �p��2+ �pr�2= ��̃ijk

effE jEk�2 may be expressed as �p�2
=d1�+d2�E3

2+d3�E3
4, where di� are coefficients that depend on

the scattering angles. For linear input polarization, �p�2 has
the form given by Eq. �42�.

IV. CONCLUSION

In this paper, we have developed the theory of SH scat-
tering from finite cylinders of arbitrary symmetry within the
RGD approximation. The nonlinear response of the particle
may be described by the vector nonlinear form factor p. For
noncentrosymmetric medium, which exhibits bulk local re-
sponse, the nonlinear form factor of the particle is expressed
as a product of the linear optical form factor and the nonlin-
ear susceptibility vector, i.e., p= f�0, which is also valid for
arbitrarily shaped particles. Furthermore, this simple relation
implies that the various nonlinear optical susceptibility ele-
ments undergo the same scattering form factor f . For cen-
trosymmetric medium, where the nonlinear optical response
originates chiefly from the surface and the nonlocal bulk
nonlinear polarization, the nonlinear form factor is more
complex such that each nonlinear susceptibility element may
experience different and multiple form factors. One com-
monality between these two types of particles, however, is
that the nonlinear form factor may be expressed in terms of
the effective susceptibility �ijk

eff. For a cylindrical particle of
arbitrary material symmetry, there are in general 18 indepen-
dent effective susceptibility tensors. This property is true
even for the case of a cylinder comprising centrosymmetric
medium whose local surface possesses a general isotropic
symmetry. In contrast, a sphere with centrosymmetric me-
dium of arbitrary surface symmetry possesses only four in-
dependent effective nonlinear susceptibility elements for
SHG. This large difference in the number of effective sus-
ceptibility elements between these two systems indicates the
significant influence of anisotropy that may stem from either
the particle shape or symmetry of the medium, ensuing in an
astonishingly complex nonlinear optical response of the cy-

lindrical object in comparison to that of a sphere.
The validity of the RGD approximation has previously

been tested and demonstrated experimentally with a high de-
gree of success for the case of spheres of centrosymmetric
media in SHG and SFG measurements even in the presence
of slight index mismatch. We have applied this approxima-
tion to finite cylinders with the goal of bringing forth a
lowest-order theory that provides suitable description and ba-
sic understanding of the nonlinear optical response of aniso-
tropic structures. The consequences of this simple model are
numerous and far reaching. Among those predictions of the
theory include the largely anisotropic response of the SH
field on the particle orientation and input-field polarization,
its oscillatory dependence on the particle length, the direc-
tionality of the SH radiation, its rich scaling rules for small
particles, and its distinctive chiral response. Clearly, much
remains to be accomplished in developing a more general
theoretical treatment that takes into account more realistic
shapes and larger index contrast between that of the particle
and the ambient media. Such endeavor is a daunting task as
can be seen from the enormous amount of literature pub-
lished on linear optical scattering alone. The rapid progress
in nonlinear optical studies of particles, however, should pro-
vide further motivation for more rigorous theoretical treat-
ments of nonlinear optical scattering which should, in turn,
offer guidance for a new generation of particle characteriza-
tion techniques as well as furnish better understanding and,
perhaps, new approaches for important applications, such as
SHG and SFG microscopy.
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APPENDIX A: NONLINEAR FORM FACTOR
OF A CYLINDER

Here, we consider only the surface contribution from ��
=a. A useful scheme that aids in evaluating the integral of
Eq. �6� or more specifically Eq. �28� is to define the follow-
ing parameters:68

Q1 = Q cos � , �A1a�

Q2 = Q sin � . �A1b�

Using Eqs. �A1a� and �A1b� and Eq. �15�, we obtain

q · r� = Q�� cos��� − �� + Q3z�. �A2�

Substitution of Eq. �A2� into the surface integral of Eq. �26�
corresponding to the curved portion of the cylinder, ��=a,
reduces Eq. �26� into Eq. �28� where

� = �
0

2�

�Js
�2�:�̂0�̂0g����d�� �A3�

and
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g���� = exp�i	0 cos��� − ��� , �A4�

with 	0=Qa. In terms of the particle frame, �=�i�x̂i�. The
quantity �i� may be expressed as

�i� = �
0

2�

�s,ijk
�2� E jEkg����d��

= �s,���
�2� E jEk�

0

2�

Ai�Aj�Ak�g����d��, �A5�

where Ai�=Ai���� is the transformation matrix element from
cylindrical to Cartesian coordinates of the particle axis, i.e.,
xi�=Ai�x�� with i= �1,2 ,3� and �= ��� ,�� ,z��. The expression
for �i� has the form

I�	0,�� = �
0

2�

u����g����d��, �A6�

where u����=cosm����sinn����, �m ,n�= �0,1 ,2 ,3�, and 0
 �m+n� 3. Equation �A6� may be further simplified by
making the replacement ��→��+� and using u����
=u���+2�� to yield I�	0 ,��=
0

2�u���+��g���+��d��. Af-
ter expanding u���+��, we collect the factors of the form
cosm����sinn����, and the resulting integrals are expressed in
terms of Bessel functions of orders ranging from 0 to 3.
Specifically, we may define the following quantities

In = �
0

2�

Kn����g��� + ��d��, �A7�

where

Kn���� = �1, n = 0


j=1

n

�Aj cos �� + Bj sin ��� , n# 0.� �A8�

Note that both In and Kn are implicit functions of the coeffi-
cients �Aj ,Bj�. The integrals In are evaluated to yield Eqs.
�30a�–�30d�.

APPENDIX B: NONLINEAR FORM FACTOR
OF A SPHERE

1. Noncentrosymmetric medium

For the case of noncentrosymmetric medium, the nonlin-
ear form factor is given by Eq. �16�: p= f�0, where the linear
form factor may be expressed as

f = �9�

2
�1/2J3/2�qa�

�qa�3/2 . �B1�

�0 is given by Eq. �18�, q=2K1 sin� /2�, and a is the radius
of the sphere. Note here that one may extend the applicabil-
ity of Eq. �16� to the case of an ellipsoidal particle by simply
making the substitution q→ �Q2+ �Q3��2�1/2 in Eq. �B1�,69

using the definitions for Q, Q3, and �, employed in Eq. �19�
for the cylinder.

2. Centrosymmetric medium

For a particle comprised of centrosymmetric medium, the
nonlinear form factor is calculated by assuming a particle
reference frame described by the relation xi�=Mij�xj. For the
cylinder, the main axis and two axes orthogonal to it form a
natural particle reference frame. For the sphere, a natural
reference frame may be defined in terms of the direction q.
In particular, one may set ẑ�=q /q. The coordinates x� and y�
may be defined according to the relation xi�=Mij�xj, where
Mij� =Mij�� , /2−� /2,0� and Mij is an element of M defined
in Eq. �9�. The matrix M� transforms the input-polarization
vector component �0i into the polarization component Ei in
the particle frame �Ei=Mij��0j�, and converts the calculated
nonlinear form factor in the particle frame back to the corre-
sponding laboratory frame quantity according to Eq. �31�.
Making use of the particle reference frame and the source

coordinates described by �r̂� , �̂� , �̂�� in spherical coordinate
system, one may calculate the surface nonlinear form factor
given by ps= �1 /V�
�Js

�2� : �̂0�̂0	�r�−a�exp�iq ·r��dr�, which
becomes

ps =
3

4�a
�

0

2��
0

�

�Js
�2�:�̂0�̂0g̃���sin���d�d��, �B2�

where 	=qa=2K1a sin� /2� and g̃���=exp�i	 cos����. In
the particle frame, the component ps,i� of the surface nonlin-
ear form factor becomes

ps,i� =
3

4�a
�

0

2��
0

�

�s,ijk
�2� E jEkg̃���sin���d�d��

=
3

4�a
�s,���

�2� E jEk�
0

2��
0

�

Bi�Bj�Bk�g̃���d�d��,

�B3�

where Bi�=Bi�� ,�� is the transformation matrix element
from spherical to Cartesian coordinates of the particle axis,
i.e., xi�=Bi�x�� , where i= �1,2 ,3� and �= �� ,�� ,r��. In Eq.
�B3�, we have implicitly made the assumption that the local
surface nonlinear response is anisotropic and the nonlinear
susceptibility elements, �s,���

�2� , where the indices �, �, and �
refer to the spherical coordinates, are constants within the
spherical coordinate reference frame of the particle.

The contribution from the bulk, pb, is given by

pb = i���̂0 · �̂0�fq , �B4�

which was derived in a similar fashion as in Eq. �25� but
with f given by Eq. �B1�. In the particle reference frame,

pb,i� = i�E jE j fq	iz�. �B5�

Inspection of Eqs. �B3� and �B5� shows that the total com-
ponent of the nonlinear form factor, i.e., pi�= ps,i� + pb,i� , may
be written as

pi� = �̃ijk
effE jEk, �B6�

where the elements of the effective susceptibility may be
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expressed as �̃ijk
eff=�n!̃ijk,nJ�n+1�/2�	� /	�n+1�/2 are given in

Table II. If we consider only the achiral contributions to the
isotropic surface response corresponding to the surface sus-
ceptibility elements ��s,���

�2� ,�s,�� �
�2� ,�s,���

�2� �, we obtain the

RGD expression for the SH field in Ref. 23 �see comments in
Ref. 96�. For SFG from spheres of arbitrary surface symme-
try, the effective susceptibility has been calculated and pre-
sented in Ref. 54.
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